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Canopy architecture and multitrophic
interactions

Introduction

Predator—prey, parasitoid—host, and other arthropod interactions do not
occur in a vacuum, nor in a featureless world, but in a highly structured
and complex environment. This basic observation has triggered numer-
ous theoretical and empirical studics at the population level. Many arc
centered on the dynamics of populations occupying different patches
(summarized in Hasscll, 2000). A mectapopulation framework implies a
spatial arrangement of patches and movement of predators between
them. However, once in a patch, a homogencous spatial situation is again
assumed, and predators search at random. In fact, we know of very few
examples of arthropod predator—prey or host—parasitoid studics which
do incorporate the geometry of the environment at a smaller scale than a
patch. In particular, we do not know any study that satisfactorily quan-
tifies the architecture of the plant canopies and its influences on the out-
comes of the interactions. This is surprising given that a great majority of
predator—prey and parasitoid-host interactions occur in vegetation.
Filling this gap is the thrust of this chapter.

The disregard for the architecture of the environment, in particular
plant architecture, has two explanations. First, concepts and methods for
mapping and modeling plant architecture have been developed only
recently, i.e., mainly from the 1980s. Plant architecture, in particular tree
architecture, has been the subjecr of intense research for quite some time
(see for example Halle and Oldeman, 1970; Halle ¢t al., 1978), but this work
was of a qualitative nature. Thus, the knowledge of how to measure and
model plant architecture is too recent to have penetrated all fields of
ecology. Plant canopies are highly complex modular structures that can be
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described both in topological and geometrical terms. Topological informa-
tion specifies the physical relationships between the different components
of the structure while geometrical information specifies, inter alia, the
shape, size, and spatial location of the components (Godin et al., 1999). The
architecture of a plantis an emergent property of its morphogenetic rules.
Several ways to model morphogenetic rules have recently been proposed
and the field is very active (see Room et al., 1996; Michalewicz, 1999; Pearcy
and Valladares, 1999; Gauthier et al, 2000; Parker and Brown, 2000).
Second, modeling interactions without paying attention to the fine-
grained structure of the environment enables us to use variants of diffusion
equations, for which alarge body of knowledge is available (see Tilman and
Kareiva, 1997; Shigesada and Kawasaki, 1997; Turchin, 1998). As comfort-
able as these assumptions may be, we are left with a large number of inter-
actions for which a consideration of the geometry of the environment
seems mandatory. The following example illustrates the kind of situations
we envisage and the type of problems we would like to solve.

Imagine a ladybird beetle moving through vegetation, searching for
prey of low abundance. Most of the stems and leaves and other structures
the beetle explores are void of prey. Except for a few locations with hosts,
and a few more with “hints” to the predator such as honeydew drops, the
animal is moving in an empty “maze.” The “maze” constrains its move-
ment by determining which routes are possible and which are not and is
characterized by having components of both order and disorder. The
animal itself makes different behavioral decisions in seemly similar con-
ditions, i.e., it also displays some degree of “randomness,” real or not, in
its movement rules. Finally, the distribution of prey is most likely
clumped, implying that the travel time between clusters of hosts will be
very long. These long journeys will be spent finding a way through the
maze.

The above description calls for a thorough understanding of at least
three components of the multitrophic interaction: (1) the architecture of
the environment, (2) the distribution of prey in the environment, and (3)
the intrinsic movement rules of the predator. It is only after we have all
three components that we can answer the following questions:

« What s the relative impact of plant architecture and prey distribution
on predator searching efficiency?

« How is the risk of predation distributed among prey?

« Are the basiclaws of diffusion equations valid, such as thelinear
increase mean square displacement?
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* If yes, under which conditions can we disregard the architecture of the
environment and use a “mean field” approximation?

« If no, what are the consequences of the anomalous diffusion in terms
of individual and population parameters?

» Finally, how much biological realism must be sacrificed to constructa
robust model for plant architecture and animal movement?

The above questions would be best answered by blending harmoni-
ously the two themes of movement processes and geometrical systems. In
practical terms, however, it is much easier to emphasize one of the themes
and simplify the other. Thus, this chapter has been written from the per-
spective of a predator foraging for stationary prey in plant canopies of
given architecture. Hence, we do not deal with modeling plant architec-
ture per se and point the interested reader to the above entry points in the
literature. The framework advocated here could easily be extended to
nectar foraging and pollinator movement (see for example Pyke, 1978;
Ganeshaiah and Veena, 1988), but these are not multitrophic interactions
as understood here. A treatment of these interactions along the lines
described in this chapter has not been attempted so far. Also untouched is
an aquatic perspective on these issues, as vegetation does act in a very
similar way on predator—prey interactions in aquatic environments (see
for example Russo, 1987).

The organization of the chapter is as follows. We first conduct a stock-
taking of the published works on arthropod interactions in which plant
architecture has been studied. While we consistently use predator—prey
systems for simplicity, parasitoid-host interactions can be analyzed in the
same way. We will see that some of the ideas can even be applied to phy-
tophagous insects, as they mustalso solve the problem of resource location
in a highly heterogeneous environment. Second, we explore the impact of
plant architecture on the efficiency of the predator. Then, we turn to the
population level and analyze the impact of plant architecture on preda-
tion rate. The dozen or so studies provide highly useful information on
several aspects, but concomitantly give a somewhat fragmented perspec-
tive. The need for a synthesis is obvious, and we present a summary of
ideas emerging from the study of random walk in a random medium. We
advocate this framework as the best available to examine multitrophic
interactions in plant canopies, as simply observing predators moving in
plant canopies is not sufficient for tackling the above questions. We end
the chapter by calling attention to several other fascinating and unex-
plored aspects of multitrophic interactions in complex environments.
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Canopy gcometry, prey distribution, and predator
movement: a stocktaking

The aim of this section is to review the few publications demonstrating
how the complex geometry of the plant leads to a heterogeneous distri-
bution of prey and a heterogeneous distribution of predator effort.
Andow and Prokrym (1990) suggested that there are three components of
plant architecture relevant to foraging predators and parasitoids: (1) the
plant size and surface area, (2) the structural heterogeneity among plant
parts such as flower heads and stems, and (3) the connectivity of the plant
parts. Their experiments approximated the structural complexity of
plants by providing paper panels of different geometries to the egg para-
sitoid Trichogramma nubilalis. The number of parasitized egg masses of
the host-moth Ostrinia nubilalis was analyzed as a function of the com-
plexity of the paper panel. They made the important distinction between
two different mechanisms acting on parasitism rates. On the one hand, a
parasitoid may find the hosts more or less easily due to the structure of
the environment, given the same searching intensity. On the other hand,
parasitoids may forage with different intensities, irrespective of the pres-
ence of hosts, but as a function of the complexity of the environment.
Structural complexity caused a threefold decrease in parasitism rate
between the simple and complex environments. Part of the decrease in
parasitism was due to the fact that Trichogramma searched simple surfaces
devoid of hosts more intensively than complex ones. The major implica-
tion of this work is that decision rules such as giving-up time are influ-
enced by the structural complexity of the environment per se. The results
obtained by Andow and Prokrym (1990) were later corroborated by
similar results by Lukianchuk and Smith (1997) using a different
Trichogramma species and greater surface complexity. These important
results have yet to be incorporated into works dealing with foraging in
realistic complex environments.

Given the highly structured environment of plant canopies, prey will
not be randomly or evenly distributed in the canopy. Nor do predators
forage randomly or evenly. They tend to follow the structure of the
canopy, but sometimes only partially. For example, the aphid parasitoid
Aphidius rhopalosiphi spends most of its time on the leaves and little on the
ear of wheat, the preferred feeding site of its aphid host Sitobion avenae
(Gardner and Dixon, 1985). The parasitoids were reluctant to move on to
the ear and normally spent little time there. Another parasitoid of
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aphids, Aphidius funebris, attacks its host in a typical body posture that
requires it to attack from leaves adjacent to the host colony (Weisser,
1995). A similar problem of prey accessibility was observed by Grevstad
and Klepetka (1992), who found that aphids on Brassica oleracea caulorapa
were mainly located on the middle of the underside of leaves, an area
ladybird beetles could not get at because they could not grip to the
undersurface. Consequently, the beetles tended to follow leaf edges and
stems rather than the flat surface. Leaf edge is also the preferred route
taken by the predator Anthocoris confusus during its search for its aphid
prey (Evans, 1976). Predators moving in plant canopies composed of
needle-like structures rather than leaves encounter similar problems.
As described by Vohland (1996), needle density is higher in the upper
and outer sectors of pine trees. This strongly influences the time spent
by the older stages of the coccinellid Scymnus nigrinus, which spend most
of their time there. This is also where prey densities are highest. The
one-dimensional geometry of the needles “guides” the predator to its
prey, and small larvae were very reluctant to cross over the shaft
between bark and needle, where the prey feeds. Finally, using normal
versus leafless peas, Kareiva and Sahakian (1990) demonstrated that the
importance of plant morphological variation to herbivores sometimes
becomes apparent only in a multitrophic framework. They demon-
strated that different species of ladybirds were less effective in the
normal peas, as they fell off the plants more often than in the leafless
canopies. In contrast, whereas plant canopy architecture can impede
predators by making the “maze” complex, it can also influence the
aggregation of prey and predators, as nicely demonstrated by Kaiser
(1983) using artificial arenas. He showed that borders influence both
prey and predator spider mites in such a way that both stay more often
along borders. The shorter the total length of borders, the higher the
probability of contacts. As a consequence, different leaf forms of the
same area can lead to different predation rates.

These examples show that the spatial coincidence of prey distribu-
tions and predator foraging effort is a key aspect of the interaction. They
also demonstrate that descriptions of predator movement and prey distri-
butions anchored in a framework based on homogeneous environment
are not realistic. Obviously, it will often be difficult to quantify the effect
of plant architecture on predators, because prey may change their behav-
ior and location in the presence of predators, and vice versa.
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Canopy geometry and predator movement: implications for
multitrophic interactions

The effects of the complex geometry of plant canopies operate at both
the individual and population levels. We first focus on the efficiency of
predators, a behavioral trait, as function of plant architectural complex-
ity.

The efficiency of a moving predator can be defined in many different
ways that reflect the influence of plant architecture. Isenhour and
Yeargan (1981) defined a measure of efficiency of explored regions as the
distance traveled per encounter with a prey. They found very large differ-
ences for the bug Orius insidiosus attacking thrips on soybeans. The effi-
ciency was at least an order of magnitude higher on the petiolus junction
and on the midrib than on the leaf periphery. Efficiency can be also
defined as the speed at which an animal travels a given distance. By
varying the degree of bean-plant leaf overlap, Kareiva and Perry (1989)
created two scenarios for the ladybird Hippodamia convergens: a highway
and a gap situation. The highway situation enabled the ladybird to travel
four times further (net displacement) per minute. The difference was
mainly due to the high frequency of reversals in the gap situation. This
fascinating study needs confirmation, as advocated by the authors them-
selves. This example is highly reminiscent of percolation theory, in which
the probability of reaching a given point in space or the probability of
crossing the whole medium is a function of the connectance between ele-
ments (Stauffer, 1985). Efficiency can be also defined as time allocation to
given tasks. Suverkropp (1997) found that decreasing the time allocated to
Trichogramma searching in a single plant increased the attack rate. While a
longer search on a plant does of course increase the likelihood of finding
an egg mass on that plant, the time spent is better allocated to checking
other plants, given that hosts are randomly distributed among plants.
This is an interesting way to avoid the complex architecture of canopies:
instead of getting lost in complex structures, abandon them quickly and
move somewhere else. Finally, efficiency can be synonymous with attack
rate, which is the number of aphids killed per unit time. Grevstad and
Klepetka (1992) found that the attack rate of four different ladybird
beetles on aphids was much more influenced by the plant on which they
foraged than by the ladybird species. This was due to differences in
encounter rates, which were again function of plant species rather than
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beetle-specific. The rate at which beetles fell off the plant was also a func-
tion of the plantspecies, in particular the slipperiness of the plant surface.

We now turn to the population level and analyze predation rates as
function of plant architecture. The interplay between host density and
plant architecture in determining parasitism rate at the population level
has been worked out for an apple leaf miner by mapping both the archi-
tecture of trees over three years old as well as the position of unparasitized
and hosts parasitized by Cirrospilus vittatus (Casas, 1991). The visit of a
female parasitoid to a tree results in the parasitism of one or more hosts.
While the first host is assumed to be chosen at random within the tree,
further hosts can be parasitized, at random, within a spherical radius of
40 cm. The center of the moving sphere is the host currently under attack.
In a young tree, patasitism resulting from a single visit made by a forag-
ing female is usually restricted to hosts on the same branch, as most of the
neighbor leaves within the sphere are on the same branch. Older trees
have more branches and hence a more complex architecture. Attacks by a
parasitoid then include different branches because they often intermix.
In these cases, females no longer follow branches individually. As the
number of hosts parasitized per attack is low due to the low fecundity of
this species, one can expect inversely density-dependent parasitism per
visit. In fact, parasitism rates at the branch level will be lower on older
trees, as the attacks resulting from a single visit will be spread over several
branches (Fig. 8.1). The relationship between the movement of the indi-
vidual parasitoid (dimensions of the sphere of activity) and the tree archi-
tecture (dimensions and relative location of the branches) is of prime
importance.

Usingartificial plants of varying architecture, Geitzenauer and Bernays
(1996) found that paper wasps attacked tobacco budworms at higher rates
in architecturally less complex canopies. The mechanisms were behav-
ioral, as it took them less time to locate hosts in the simpler canopies. The
giving-up time was also higher in those plants. Also using artificial
models, Frazer and McGregor (1994) showed major differences in giving-
up time of a coccinellid beetle as a function of the form and angles of
attachment of stem and leaf models. These differences are expected to
result in major differences in the density of predators in a given crop and
major differences in attack rates. All architectural characterizations of
plantsize, height, leaf number, leaf surface area, and branch number were
negatively correlated with the attack rate of Leptomastix dactylopit, a parasi-
toid of the citrus mealybug (Cloyd and Sadof, 2000). The form of the func-



Canopy architecture and multitrophic interactions

1985

L] L]
L]
o d LA ) 7
51 e /
ry
L]
[ ] . / }
L]
. ¢ Se * /
L]
. L]
L]
0 [ N
1
1986
}E ¢ L4 \i \ i
&
5 05+ ® e 2]
Q
N L]
e o @
o, .
o,
0 1
1
1997 {
L ]
05- @
L ]
[ ]
[ ]
[ )
L)
L]
] Il
0 10 20
Host density

Fig. 8.1, Parasitism at the branch level per year in a tree (left) and canopy
architecture of the tree during three successive years (right). Only branches
bearing hosts are represented. The radius determining the volume in which a
host can be attacked from a given location is also given.

tional response may also change as function of plant architecture. This
may havea profound effect on the stability of predator—prey relationships.
Messina and Hanks (1998) described a shift from a functional response
type IL to type III of a ladybird beetle foraging for aphids on two different
plants. The shift was due to a density-dependent change in the proportion
of aphids in refuges, such as rolled leaves, on one of the plants.

The general message from these studies is that plant architecture has
major influences at different levels of multitrophic interactions: at the
behavioral decisions of predators, on their own efficiencies, and on the
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predation rate. It also influences the prey distribution and the spatial
coincidence of prey and predators. We have seen one example where the
influence of the first trophic level (plant species) on the third level (efh-
ciency of predators) can be even bigger than the influence on the second
trophic level (prey species). Unfortunately, these studies give a scattered
view of the problem, but a general framework to deal quantitatively with
the pervasive influence of the geometry of the environment is currently
unavailable for ecologists and is sorely needed. We think that one based
on random walks in random geometries could address most of the issues
involved. This is our next topic.

Random geometry of the environment and particle
movement

We momentarily leave ecology and enter a very active field of research in
statistical physics. It covers two distinct themes: the movement of a
walking particle and the geometry of the structure in which the particleis
moving. We will deal with random movement of the random walk type,
where the walker advances one step in unit time to a nearest neighbor
site. For the geometry of the environment, we will assume lattice struc-
tures, either of a deterministic or random nature. Lattice structures are
discrete versions of space that consist of sites connected to their nearest
neighbor sites by bonds. We first describe well-known facts about regular
diffusion in a regular lattice and continuum and then move on to more
complex environments. We focus on random environments, as we think
they better represent the architecture experienced by real insects.
Movement in a tree-like structure, the comb, is used as an example to
illustrate the effectof randomness in the environment’s geometry and the
effect of bias on the diffusion properties of the particle. We highlight the
breakdown of many assumptions underlying the diffusion equation
approximation.

Regular diffusion
Let us consider the most simple random walk in an homogeneous envi-
ronment, theline(... —4, =3, -2, —1,0, +1, +2, +3, +4,...). The particle
hops with steps of +/—1. The particle starts at o and moves towards the
left with probability p and towards the right with probability ¢. For a
small number of steps, it is possible to calculate the exact location of the
particle after n steps using the binomial distribution. As an example,
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assume p=0.6,  =0.8, and s? = 4pq = 0.96. After 40 steps, the probability
of being no further than 10 steps from the origin is 0.68. After 1 million
steps, the particle’s position will lie almost certainly within a mere 4000
units of its starting-point. In other words, the particle does not move
very far from the origin, even after many steps. Working out these prob-
abilities becomes tedious when the number of steps becomes large, and
we can make use of the central limit theorem and related theorems of
probability theory to find continuum limits of random walks. By using
limiting arguments, it is indeed possible to produce differential equa-
tions describing the continuum limit of this walk in both space and time.
In other words, we give up the lattice structure and enter into a contin-
uum, another homogeneous environment. For simplicity, we use a one-
dimensional environment. The position of the particle X(t) becomes then
the Gaussian limiting distribution, N (at D2¢), which is the outcome of
the diffusion equation, or Brownian motion with drift ¢ and variance D2
(Fig. 8.2).

Large deviations are rare occurrences in the Gaussian distribution.
Indeed, a Gaussian variable with fluctuations ¢ diverges from the mean
by more than 2 o in only 5% of cases. Fluctuations of more than 10 o are
almost impossible, with a probability of 20723. The main advantage and
the importance of the central limit theorem, which is the basis for the
Gaussian limiting distribution, is that only very few quantities are
retained from the observed dispersion process. Its detailed structure is
lost in the tails that vanish with time. Among the statistics of interest that
can be easily obtained are, for example, the diffusion coefficient D and the
mean square displacement. It is a convenient means for measuring dis-
persion of the particle from the origin and increases linearly with time for
diffusive processes (i.e., regular diffusion). The number of different sites
visited, called the range, is also easily calculated.

We just showed above that discrete random walk processes can be used
to generate continuous time processes by taking a continuum limit in
both space and time. It is also possible to generate a continuous-time
process on a lattice structure, i.e., keeping space discrete, by the use of
linear rate equations (Weiss, 1994). Finally, one can also apply a very
useful approach, the continuous-time random walk model. It has the
advantage of having well-defined steps taking place at well-spaced times.
Specifically, one can use a lattice structure and a particle moving between
sites where it remains for a given sojourn time ¢, following some pre-
scribed distribution (Weiss, 1994). Sojourn time is defined as the time
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Fig. 8.2. Spread over time of a particle moving according to Brownian motion,
without (top) and with (bottom) drift.

spent in one state before moving to another state. Random walks in a
homogeneous environment in which the step-length distribution has a
fat tail (i.e., long displacements occur relatively often) can change the
basic rules of diffusion. In those distributions, the very long displace-
ments do determine the overall dynamics of the system (probability of
reaching a location, mean square displacement, etc.). The process
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becomes superdiffusive, meaning that the particle moves quicker than in
the normal diffusion process. This is shown by considering the mean
square displacement that increases with the power of time 7, with y>1
(for so-called Lévy walks, see Drysdale and Robinson, 1998). These distri-
butions have been found to be a valid approximation for several species of
animals, including insects (Viswanathan et al., 2000). In biological terms,
such distributions imply that the likelihood of finding a predator far
away from its starting location in a relatively short time is relatively high.

Random environments

Heterogeneity in the environment can be modeled in different ways. One
way is to use deterministic models, such as those developed for fractals,
percolation, etc. This will not be pursued here, but we refer to Halvin and
Ben-Avraham (1987) for an in-depth treatment. Another approach,
random environment modeling, is to consider one sample of the environ-
ment {a plant) as a single realization of an ensemble (a population of
plants). The local properties of the realization, such as the location of gaps
in the canopy, are determined following some stochastic process. The
position of a particle, and all the statistics associated with it, depends on
the history of the particle in the given environment and on the environ-
ment itself. Let us denote one realization of such an environment, a single
plant, with w. This environment will remain, for the sake of simplicity,
constant through all the walks by the particle. One then has to distin-
guish two different ways of calculating averages: one over the environ-
ment w and another one over the ensemble of possible environments {2,
the population of plants. This averaging gives the average behavior of the
particle in an averaged environment, probably the description nearest to
the heart of ecologists. It is only after the second averaging that one can
appreciate the general features of the system. In practical terms, it
requires the ecologist to map several canopies and predator paths and to
come up with a probabilistic model describing both canopy geometry and
predator movement.

The environment does not evolve with time in so-called quenched
environments. By contrast, in annealed environments, a particle will
never experience the same environment. For predators tracking prey in
the vegetation, either model can be used, but we focus here on the sim-
plest, the quenched environment. We will come back to annealed envi-
ronments in the discussion. The randomness in the environment can
have two kinds of effects on diffusion (Bouchaud and Georges, 1990):
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« It may affect the value of the transport coefficients (velocity, diffusion
coefficient, etc).

» Tt may affect the law of the diffusion process. For example, the mean
square displacement may no longer increase linearly in time over long
times. Anomalous diffusion, being super- or subdiffusive, corresponds
to this kind of movement. In the superdiffusive case, the mean and
mean squared displacement increase more quickly than linearly. The
subdiffusive behavior leads to a sublinear function of time for both the
mean and the mean square displacement.

In order toillustrate our ideas, we use below a specific model of a parti-
cle moving in a comb structure. But let us first contrast in general terms
the propagation of two packets of predators, both released at the same
end (x=o0) of a one-dimensional space, and experiencing a drift in the
same direction. Assume also that movement is made of hops, or steps of
short distance. In the first case, the environment is homogeneous, leading
to regular diffusion. In this case, the packet of predators moves as a whole,
the location of the mode being the same as the location of the mean (Fig.
8.2). In the second case, the random geometry of the environment leads to
long sojourn time at some locations, which then act as temporary traps. A
large percentage of the predators experience usual displacement, similar
to the predators experiencing regular diffusion. However, the longer the
experiment, the greater the likelihood that all predators become trapped
atsome stage, i.e., hita relatively rare but quite long sojourn time. In this
subdiffusive case, the mode stays at x= o0, and the mean position contin-
ues to increase, but at a decelerating rate (hence the name subdiffusive).
This behavior is in contrast to the regular diffusion in which the mean
progresses at a constant rate.

The random comb as an example
The comb structure bears strong similarities to real plant canopies as
experienced by insects. It is a simple structure, made of a backbone and
branches (Fig. 8.3). Framed in our topic, we ask for example how quickly
insects move in a field given that they move up and down in the vegeta-
tion. Hence, one may envisage the vertical components of vegetation as
acting as “traps” when considering movement in the horizontal plane.
The problem is to characterize the movement along the backbone as func-
tion of the movement in the branches. Whenever a particle reaches a point
on the x-axis it either makes a step along the x-axis with probability pora
step in the y-direction, along a branch, with probability 1 - p. The particle
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Fig. 8.3. The horizontal displacement of a predator moving up and down in
vegetation (left) can be compared to a particle moving along a backbone and
spending time in the vertical branches of a comb (right).

will then move within a branch following given jumping rates for the ver-
tical movement. Once back on a point on the x-axis, the process repeats
itself. The construction of this example is in three steps of increasing
complexity:

1. We first assume no randomness in the branch length, which we set at
infinity, and study the movement of the particle along the backbone.
The observed movement cannot be modeled by the diffusion equation.

2. Then, we let the length of the branch vary and observe diffusive and
subdiffusive behavior as function of the distribution used for
modeling branch length.

3. Finally, using the branch distribution that would best correspond to
real situations experienced by insects, we add vertical bias, i.e., the
tendency for many insects to move up rather than down. A complete
breakdown of the diffusive behavior is again observed.

We now demonstrate these three steps in detail.

Let first assume that there is no randomness in the structure and that
the branch length is infinite. This biologically unrealistic assumption
will be dropped later. The probability of return to the x-axis (74) of a parti-
cle moving in one branch is the probability of return to the origin in a
one-dimensional random walk for the first time at step n,7,~n73/2, This
probability distribution is somewhat special in the sense that its mean is
infinite. The total time spent in branches is simply the sum of the N
sojourn times spent in the different branches. As it is a sum of indepen-
dent random variables, we can apply the central limit theorem and obtain
the mean square displacement <r2(n)>~n1/2, which is characteristic of
anomalous diffusion. The anomalous transport is due to the average
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infinite sojourn time of the particle in the branches. This leads to the occa-
sional occurrence of very long waiting times. Let us recall that this break-
down of the diffusive behavior is obtained without any randomness or
heterogeneity in the environment. However, this model is unrealistic due
to the assumption of infinite length of the branches. The second step in
our demonstration consists of adding randomness in the structure by
assuming that the branch length (x) is given by the power law distribution
Ax)~yx ~(1+ 7). We obtain anomalous diffusion if y=<1. If y>1, then the
average branch length is finite and the diffusion is again regular at large
times. A distribution with finite average branch length seems a priori the
best analogy to situations encountered in nature by insects. The final
“improvement” of our model is the addition of bias in the particle move-
ment. Bias in random environments has two opposite effects (Halvin and
Ben-Avraham, 1987). On the one hand, the particle is following the direc-
tion of the field, giving rise to a drift velocity. On the other hand, dead
ends act as temporary traps from which particles escape by going against
the flow. As a concrete example, let us consider the above case of regular
diffusion on a comb by assuming that the branch length is given by an
exponential distribution. Then assume that the bias is in the vertical
direction. Thus, the particle has a higher probability of going upwards
than downwards. Hence, one can ascribe to each branch a delay associated
with the branch length. Long branches determine the overall behavior of
the particle, as it is “pushed” towards their tip. One can show that the dis-
tribution of delays follows a power law distribution and that diffusion is
again anomalous. This scenario corresponds in our multitrophic context
to situations in which predators move preferentially upwards and may
miss prey located on their way up.

Coda

The random geometrical structures in some dimension(s) of the environ-
ment cause delays in the movementof the particle in other dimensions. In
the comb example, vertical movement in the branches delays progression
along the backbone. The delay is generally characterized by a long tail of
sojourn times that leads to anomalous transport along other dimen-
sion(s).

The study of processes characterized by time distributions with fat
tails also brings to the forefront an important problem of scale. Some
sojourn times are of the same order of magnitude as the total time of
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observation. This leads to yet another breakdown of the regular diffusion
approach, and its basis, the central limit theorem. In other words, there
may not be enough time or steps in the process to attain an equilibrium
distribution. By contrast, in the regular diffusion framework, the time-
scale is defined by the mean value of the sojourn time distribution, while
the physically relevant scale is defined by the variance of the step length
distribution. There are no such scales in anomalous diffusion, as those
moments diverge (Paul and Baschnagel, 1999).

These very general results, albeit borrowed from statistical physics, are
bound to be true for predators moving in plant canopies. The implica-
tions are twofold. First, the geometry of the environment will determine
therisk of predation of individual prey. Indeed, the probability that prey i
located at X; will be attacked by a predator jlocated at X; within some time
interval is obviously a function of their respective locations and the pos-
sible paths between them. The role and form of risk heterogeneity
between prey in population dynamics is a major topic today as it deter-
mines the stability of the interaction (Gross and Ives, 1999; Olson et al.,
2000). Hence, the estimation of the probability distribution of risk
among prey requires at some stage an estimate of accessibility of the prey
in a given environment. Second, our understanding of spatial preda-
tor—prey population dynamics is built around the advection—diffusion
framework championed in ecology by Kareiva and Odell (1987). They and
others showed that the predicted spatial patterns, for example waves or
uniform distributions, between prey and predators are the result of a del-
icate interplay between parameters describing random movement of the
predator and its tendency to move towards prey (Wollkind et al., 1991;
Griinbaum, 1998, 1999; Cantrell and Cosner, 1999). Regular diffusion is
often an unstated assumption of this approach. For example, one
assumes that predators make many small steps in a relatively short time
and that the distance covered is a small fraction of the available space.
While these studies show how to incorporate microscopic details about
the behavior and movement of predators into a macroscopic image of
their distribution, they still lack proper model testing, as acknowledged
by the authors themselves and others (Haefner, 1996). Hence, we do not
know if these models are adequate, whether the spatial heterogeneity
produced by the geometry of the environment is important, and how
much a fuller treatment would increase our understanding of the mecha-
nisms leading to spatial stability and our capacity to predict the spatial
patterns.
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Thus, we conclude that simple random walks in homogeneous envi-
ronments and the regular diffusion approximation may be poor guides
for understanding search strategies of predators and prey location in
plant canopies. They are best replaced by a framework built around the
concept of random walks in randomly or deterministically determined
geometrically structured environments. Once such models are built and
tested, simpler approximations can then be tested and the role of the fine-
grained geometry of the environment determined.

Application of the framework

The only study we are aware of that follows the approach described above
deals with movement of fruit flies foraging in apple trees (Casas and
Aluja, 1997), a system similar to a multitrophic interaction as envisaged
above. In our study, apple trees lacked fruits, and the framework provided
the null hypothesis for inferring the influence of external stimuli, such as
fruit color and odor, on the paths of foraging flies. We mapped three trees
in cells, or sites, released preconditioned flies, and recorded their behav-
ior and location. For modeling purposes, we discarded cubes devoid of
vegetation and concentrated on cubes that could be used as landing
points for the flies. This structure is an incomplete lattice structure,
because anything within the cube is considered to lie on its lattice point
and because empty cubes cannot serve as landing points. Since we were
interested in the geometry of the path made by a foraging fly, we dis-
carded both the time spent in the cube and any movement within the
cubes. A move or step was defined as a change of cubes. Flies moved
mainly to the nearest neighbor cells, but displacement within almost the
entire range of possible values was observed. The model closest to the
obseryations was a random walk with a position-dependent bias in the
vertical component of movement. The movementrules, i.e., the probabil-
ity of moving downward, upward, or horizontally, as well as the move
distance, were estimated using foraging paths observed in one tree. The
model was then applied to a second tree. Five models were built, span-
ning a range of simplifications in the rules determining the vertical com-
ponent of movement.

We observed that flies, which generally enter the tree from the
lowest half, move quickly upward into the bulk of vegetation. There are
two complementary explanations for this behavior in terms of effi-
ciency of movement. First, the presence of a bias not only increases the
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speed at which flies move away from the starting location, but it also
increases the number of sites visited, which is one way of describing the
efficiency of a foraging path. As there is no point revisiting previously
visited sites, a fly should avoid self-crossing, and the observed number
of sites visited was indeed very near the maximum possible, indicating
a high searching efficiency. Another interpretation for this behavior
comes from the study of the diffusing properties of a set of random
walkers (see Yuste and Acedo, 1999 and references therein). When the
number of walkers starting at the same time from the same location is
large, every possible site is visited in the neighborhood of the starting
location within a very short time. But after a verylong time, the walkers
are so scattered that their paths hardly overlap, and the number of sites
visited is simply the number of sites visited by one walker multiplied by
the number of walkers. Such a mechanism is postulated as an explana-
tion for the upward bias observed in the apple fruit fly. As flies tend to
enter trees at the same height level, a bias in movement would thereby
help a foraging fly avoid self-crossings and crossing areas already
visited by other flies.

While quite sufficient in two trees, the model failed to reproduce
observed movement patterns in a third tree. Testing models of movement
in trees different from those in which they were developed is an acid test:
models may fail because they are tree-specific. However, if they pass the
test, we learn a lot about movement in plant canopies in general. The
influence of canopy-to-canopy variation in geometry is best explained
using the mean value of the range. The mean value of the range in tree A is
dependent on the configuration of tree A (spatial arrangement of gaps in
the canopy, geometry of branching, etc.). That mean value is found by
observing or simulating many flies in tree A. However, our aim is to char-
acterize movement in apple trees in general, and not justin tree A. Hence,
our final interest lies in estimating the mean value over all apple trees, as
explained in more general terms above. Thus, the failure of our model to
predict movement in a third, geometrically rather different tree is the
proof that our model was not robust enough. This is a strong case for
developing a stochastic model for the plant canopy that produces an
ensemble of canopies, out of which we could select specific realizations
that would vary slightly from each other. In parallel, one needs to develop
models of movement that are a genuine function of canopy geometry,
rather than extract the rules from one environment and apply them as
such to another environment.
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Outlook

This chapter has been written from the perspective of a predator search-
ing for immobile prey in a quenched environment. Strictly speaking, the
description of our problem is valid only for a walking predator. Indeed,
passing through connecting locations when moving from one location to
another is unavoidable for a walking animal. A flying animal can however
reach any point in asingle step with some probability. The framework can
casily be extended to flying insects once they are near or in a plant canopy.
Many flying insects do not make long flights in this environment and
follow the structure of the plant to some degree (Casas, 1990). Our
approach can accommodate this behavior by using probabilities of
moving from one location to another. This chapter has also paid scant
attention to the third player in the game, the prey. Prey choose where they
are going to end up on the plant, and their locations set the stage for pred-
ator movement. While we saw examples where prey are located in places
which are difficult for predators to reach, we do not know of any study
comparing predator movement foraging in plant canopies for naturally
distributed prey versus artificially distributed prey. Coll et al. (1997) went
a long way along these lines by distinguishing between the direct and
indirect effects of plant architecture on predators. They found varying
degrees of spatial overlap within plant canopies between prey and preda-
tors.

We end by touching on some effects of relaxing the assumption of
quenched environments. First, we can allow the canopy architecture to
change over time (annealed environments). Suverkropp (1997) calculated
the dynamics of the probability of encounter of Trichogramma and egg
masses of its host as a function of the growing maize canopy over aseason.
The leaf area was measured while the encounter probability was pre-
dicted using a data-rich model. While eggs of Ostrinia nubilalis are present,
the plant changes from having three or four leaves to having fifteen. This
represents an increase in the area to search of more than tenfold. The
encounter probability, defined as the probability of a single female
encountering an egg mass over a 24-h period, decreases from ¢. 0.3 to
¢. 0.05 during a season (Fig. 8.4). This observation suggests that most
females will end the day without finding any hosts in the fully grown
maize. This may be even true for their entire lifetime, given that they live
for less than 12 days. At the time-scale of a fruiting season, prey may
become highly susceptible to predation due to the fruit ontogeny, as
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Fig. 8.4. Probability of finding a host by Trichogramma as function of the leaf
area of maize growing over a season. (After Suverkropp, 1997.)

observed by Udayagiri and Welter (2000) for a mirid bug attacking straw-
berries. Fruit development resulted in a change in the fruits’ structure
and hence an increased accessibility of the eggs to its parasitoid. Changes
in plant architecture over time-scales of years also influence interspecific
interactions. C. R. Fonseca and W. W. Benson (unpublished data) describe
ant succession and interspecific relationships during the ontogeny of
Amazonian ant trees (tachigali). The canopy of a tree changes from an
architecturally simple plant with a couple of leaves to a huge, highly
complex canopy of thousands of leaves. More than half a dozen ant
species colonize the plant and later disappear during this ontogenic suc-
cession. Such studies show that an increase in the complexity of canopy
geometry fosters an equivalent increase in complexity of biotic interac-
tions. Ontogeny of the insects suggests that the scale of an individual’s
range may also vary within its lifespan, as shown by Yang (2000) for a pen-
tatomid predator.

A second possibility is to let the animal itself change the canopy’s
geometry. Many herbivorous insects are known to eat or tie leaves in very
specific ways in order to avoid being eaten by predators (Djemai et al.,
2000 and references therein). Except for a few studies, modification of the
canopy architecture to avoid predation and parasitism has hardly been
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considered and rarely quantitatively measured. Overall, we believe that
the most needed and lasting contributions along the lines described in
this chapter will come from an integration of carefully designed field
experiments encompassing detailed observations of prey and predator
movements with modeling canopy architecture. To date, this is a virgin
field of investigation.
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